利用javascript制作简单的计算器 (利用JavaScript的五个必备工具帮助AI工程)

AI

令许多人惊讶的是,一向在Web开发领域中大放异彩的JavaScript在开发使用大语言模型(LLM)的应用程序方面同样大有价值。我们在本文中将介绍面向AI工程的五大工具,并为希望将LLM纳入其项目中的开发人员介绍一些必要的资源。

AI工程市场在2023年的估值已经达到1420亿美元,为技能不一的专业人士提供了大量机会。对于AI工程来说,Python或Mojo是更直接简单的语言。随着时间的推移,越来越多的开发人员将能够使用先进的AI功能;但即使现在,市面上也有众多JavaScript工具可以帮助开发、训练和部署AI模型。

为什么我们会选中这五大工具呢?原因是它们在简化复杂的AI过程和增强模型训练方面具有独特能力,可以同时满足经验丰富的AI工程师和刚接触AI的JavaScript开发人员。不妨仔细看看这五个有助于促进和改进AI工程的JavaScript工具。

1、TensorFlow.js作为谷歌开发的知名TensorFlow库的JavaScript改编版,TensorFlow.js专门针对Web和Node.js环境,将机器学习功能直接引入到浏览器和服务器端应用程序。TensorFlow.js的一大强项在于能够直接在浏览器中运行机器学习模型。这项功能对于需要实时AI功能的应用程序来说特别重要,比如LLM,以支持独立于服务器的快速处理。它与Node.js兼容对于需要利用强大计算资源的服务器端应用程序而言同样重要,毕竟LLM需要庞大的计算资源。该库与现有JS应用程序的无缝集成使其成为许多开发人员的首选,因为它让他们可以将AI功能整合到其Web应用程序中,无需大规模重新设计或学习新语言。TensorFlow.js还提供了一系列预训练模型,以简化LLM集成的初始步骤。说到使用JavaScript的AI工程,TensorFlow.js是开发人员工具包中一个出色的工具。它不仅降低了将复杂的AI功能(比如LLM)添加到应用程序中的门槛,还支持在Web上创建实时交互式AI体验,从而为用户互动和应用程序功能开辟了新的途径。

2、AI.JSX(Fixie.ai)由Fixie开发的AI.JSX是一个动态框架,旨在使用JavaScript和JSX构建基于对话式AI的应用程序,其中JSX专为基于React的项目量身定制。因为AI.JSX为提示工程提供强大的支持,并与外部API轻松集成,使得它在AI工程工具中脱颖而出。它是开发交互式AI驱动应用程序方面的重大提升,特别是对于专注于对话式AI的应用程序。AI.JSX的核心功能是具有在运行时动态构造用户界面的独特能力,这是名为GenUI的特性。在这里,开发人员可以向LLM提供一组React组件,允许创建交互式UI,同时灵活适应应用程序的需求。AI.JSX还通过其工具特性扩展了应用程序的功能,该特性致力于借助API支持面向操作的功能,从而允许最终用户更高效更有效地完成任务。

3、ConvNetJSConvNetJS是一个JavaScript库,旨在直接在浏览器或Node.js环境中实现深度学习,对于技能和经验不一的JavaScript开发人员来说都易于访问和方便使用。ConvNetJS因能够实现深度学习架构脱颖而出,包括卷积神经网络,无需外部依赖项或专门的软件。从理论上讲,像ConvNetJS这样基于识别的库可以用来开发注重安全的应用程序,以增强威胁情报,从而有助于识别未经授权的访问、恶意软件的特征模式、网络钓鱼企图、借记卡欺诈、身份盗窃及留下可搜索痕迹的其他形式的数字犯罪。这个库的主要优点之一是易于使用,提供了简单直观的API,允许开发人员相对容易地定义、训练和部署神经网络。这种简单性对于在深度学习方面没有丰富经验,但试图将高级AI功能整合到其应用程序中的JS开发人员来说尤其具有价值。该库便于创建和

© 版权声明

相关文章

暂无评论

您必须登录才能参与评论!
立即登录
暂无评论...